Technical Report

報文

月着陸探査機用高エネルギー密度 リチウムイオン電池の開発

Development of High Energy Density Lithium-ion Cells for Lunar Exploration Mission

今 村 文 隆* 中 Л 祐 太* 吉 田 浩 明* 田浩 浙 誠 *** 健 *** 均*** 川瀬 内藤 星野

Nobutaka Imamura Yuta Nakagawa Hiroaki Yoshida Koichi Takeda Hitoshi Naito Makoto Kawase Takeshi Hoshino

Abstract

For the lunar exploration program (SELENE-2) by JAXA (Japan Aerospace Exploration Agency), improvement of energy density is required to a secondary cell for power supply because of the restriction of landing mass. Therefore, a prototype high energy density $LiCoO_2$ /graphite lithium-ion cell has been developed for SELENE-2 under a contract with JAXA. The features of the cell are to use $LiCoO_2$ for positive active material with stable crystal structure treatments and to adopt higher charging voltage of 4.4 V for high capacity realization. The energy density of this cell is verified to be 211 Wh/kg; namely, the value is 1.5 times as high as a conventional satellite type cell with good cycle life performance.

Key words: Lithium-ion cells; LiCoO₂ positive; High energy density; Higher charging voltage

1 はじめに

近年,小惑星イトカワから物質を持ち帰った「はや ぶさ」や国際宇宙ステーションへの物資輸送機「こう のとり(HTV)」がニュースに取りあげられるなど,宇 宙開発が注目を浴びているなか,宇宙航空研究開発機 構(JAXA)では新たに月面に着陸し探査をおこなう計

- * (株)ジーエス・ユアサ テクノロジー 大型リチウムイオン技術部
- ** (株)ジーエス・ユアサ テクノロジー 特殊・リチウム電池本部
- *** 宇宙航空研究開発機構 (JAXA)

画 (SELENE-2) が進行している.SELENE-2は,月 軌道衛星「かぐや (SELENE)」の後継機であり,Fig.1 に示すイメージのように探査機が月に軟着陸し,さ まざまな観測活動を実施するというプロジェクトであ る.この探査機の電力源のひとつとして二次電池が必 要となる.

当社は、人工衛星用大形リチウムイオン電池の開発 を世界に先駆けて 1997 年に開始し、100 Ah 級電池の 開発を 1999 年に完了しており、その後、電池のライ ンアップに 50 Ah および 175 Ah 級を加えて、市場へ の供給を継続している。これらの実績や品質保証体制 が JAXA に評価され、2008 年度に人工衛星用の標準 形リチウムイオン電池としてコンポーネント登録され た¹. 寿命性能は低軌道衛星で5年以上(DOD25%で 30000 サイクル以上),静止軌道衛星で15年以上(最 大 DOD80%で1500 サイクル以上)である. またさ らなる高エネルギー密度化および長寿命化の要求に応 えるため次世代電池の開発に取り組んでいる².

このように、宇宙用リチウムイオン電池の基礎技術 は充分に保有しているが、月探査機で使用される電池 は、人工衛星とくらべて大幅なエネルギー密度の向上 が要求されることに加えて、環境温度や運用パターン が異なるため、月探査機に特化した電池の開発が必要 となる。

当社は JAXA との開発契約の下で月探査機用高エ ネルギー密度リチウムイオン電池の開発に着手した. 本報告では,試作したプロトタイプの月探査機用高エ ネルギー密度リチウムイオン電池の評価結果をまとめ る.

2 月探査機用電池の役割および運用パタ ーンと要求エネルギー密度

2.1 役割および運用パターン

月の1日(1昼夜)の長さは,約295日であり, 昼と夜がそれぞれ約14.8日である.月面では大気が ほとんど存在しないため昼間は約120℃,夜間は約 -200℃という厳しい温度環境となる.このような温 度環境から機器を保護するため,一定の保温が必要で ある.昼間の高温に対しては太陽光を遮蔽することに より探査機内の温度を50℃程度まで下げることが検 討されている.一方,夜間の低温に対してはヒーター を稼働することにより,最低限の保温(約-40~-20

Fig. 1 Image of lunar lander SELENE-2. (Courtesy of JAXA)

℃)を実施する計画である.このヒーター用電源としてリチウムイオン電池が用いられる.

これに基づき,探査機におけるリチウムイオン電 池には、夜間は0.003 C 以下という極めて低い放電率 で連続放電し、昼間は、約50 ℃という高温でのカレ ンダー劣化を抑制するため、約14.8 日のうちほとん どを夜間放電後の低 SOC での待機状態とし、つぎの 夜の直前で完全充電することによって、昼間の平均 SOC を下げるという運用パターンが計画されている.

電池に対する要求寿命は2年以上である.運用期間 中の充放電サイクル数は24以上となるが、地上での 確認試験等を含めると100サイクル程度の寿命性能が 必要となる.

2.2 要求エネルギー密度

探査機を月面まで運ぶことができる質量は,打上能 力等の制約により,地球から人工衛星,宇宙ステーショ ン等の軌道上へ運ぶ場合にくらべ非常に小さくなる³. 探査機への観測機器の搭載を充実させるために,リチ ウムイオン電池は200 Wh/kg級の高エネルギー密度 を要求される.

3 実験条件

3.1 電池の製作

試作電池に用いた材料とその特徴を Table 1 に示す. 正極活物質には,充放電サイクルによる結晶構造変 化に対してすぐれた安定性のあるコバルト酸リチウム を使用し,負極材には高容量のグラファイトを用いた. コバルト酸リチウムは高容量正極活物質として知られ ているニッケル酸リチウム等とくらべて貴で平坦な放 電電位を示し,グラファイトは卑で平坦な放電電位を 示す.このことから,この組み合わせの電池は高い放 電電圧を示し,高いエネルギー密度が得られる.

電池外装容器には,探査機での必要容量を考慮し, 50 Ah 以上を確保できる大きさのものを採用した.

Table 1Features of materials applied for prototypehigh energy density lithium-ion cells.

Components	Features
Positive electrode	Use of newly developed $LiCoO_2$ with stable crystal structure treatments
	Use of thinner aluminum foil
Negative electrode Separator	Use of newly developed graphite Use of thinner cupper foil Use of thinner microporous polyolefin film
Electrolyte	Addition of effective organic additives sup- pressing SEI growth on negative active materials

3.2 充電上限電圧設定

電池の充電電圧設定を変えたときの寿命性能変化 は、正極活物質のそれと相関がある.試作電池の上限 電圧を決定するため、正極の単極評価試験を実施した. 作製した正極板には、コバルト酸リチウムを使用した. 対極および参照極には、金属Liを用いた.これらと 電解液とをガラスビーカーに封入した単極評価用セル を作製した.電解液にはLiPF₆を溶解したエチレンカー ボネート (EC)とジメチルカーボネート (DMC)とエチ ルメチルカーボネート (EMC)との混合溶媒を用いた. つぎに示す条件で充放電サイクル試験を実施した.

- 充電:周囲温度 25 ℃, 0.5 mA/cm²の定電流密度 で充電終止電位 4.3, 4.4, 4.5 および 4.6 V (vs. Li/Li⁺) の 4 条件
- 放電:周囲温度 25 ℃, 2.5 mA/cm²の定電流密度 で放電終止電位 3.0 V (vs. Li/Li⁺)

3.3 評価試験

試作電池の各種性能をつぎの試験項目によって評価 した.

3.3.1 初期放電試験

つぎに示す条件で, 放電性能を調査した.

- 充電:周囲温度15℃にて、5 A の定電流で4.4 V まで、その後、定電圧で合計15時間
- 放電:周囲温度 15 ℃にて,10 A の定電流で 2.75 V まで

3.3.2 寿命試験

短期間で寿命性能を調査するために,加速試験として DOD が 100% の条件における充放電サイクル寿命 試験を実施した.その条件をつぎに示す.

- 充電:周囲温度 25 ℃にて、10 A の定電流で 4.4 V まで、その後、定電圧で合計 8 時間
- 放電:周囲温度 25 ℃にて, 50 A の定電流で 2.75 V まで

3.3.3 安全性試験(過充電試験)

試作電池の安全性を調査するため,過充電試験を実施した.条件をつぎに示す.

充電:周囲温度 25 ℃にて,10 A の定電流で 4.4 V まで,その後,定電圧で合計 8 時間

過充電:外気温にて,10 Aの定電流で連続充電

4 結果と考察

4.1 充電上限電圧

Fig. 2 に充放電サイクル中の放電容量推移を示す. 充電条件 4.6 V (vs. Li/Li⁺) では,初期の容量は 208 mAh/gと最も大きいが,50サイクル後の容量は123
 mAh/gと最も小さい.50サイクル後の容量は,充電
 条件4.5 V 充電条件 (vs. Li/Li⁺)が170 mAh/gと最
 も大きい.充電条件4.6 V (vs. Li/Li⁺)とそれ以下と
 で明らかに容量低下傾向の異なる挙動が認められる.

この原因は、Li_{1-x}CoO₂結晶構造変化の可逆性が充 電終止電位により異なるためと考えられる.Li_{1-x}CoO₂ は、x = 0.50 付近と 0.75 付近に相転移がある⁴.本試 験における 4.6 V 充電条件 (vs. Li/Li⁺) は x = 0.80, 4.5 V では x = 0.66 に相当する.したがって 4.6 V 充電条 件 (vs. Li/Li⁺) の充放電サイクルでは x = 0.75 の相転 移も繰り返すことになる.このことから、4.6 V 充電 条件 (vs. Li/Li⁺) の充放電サイクルで容量保持率低下 が大きい原因は、x = 0.75 付近の相転移の繰り返しに より結晶構造の崩壊が進行することが考えられる.言 い換えると、x = 0.75 の相転移を避ければ高容量、長 寿命が期待できる.

月探査機では、100 サイクル程度の寿命保持性能は 必要であることを考慮すると、コバルト酸リチウム の充電電位の上限は4.5 V (vs. Li/Li⁺) と考えられる. したがって、コバルト酸リチウムとグラファイト負極 を組み合わせた本試作における電池の充電電圧の上限 は4.4 V とした.

4.2 評価試験

試作電池の各種性能を調査した.

Fig. 2 Changes in discharge capacity of LiCoO₂ positive electrodes during charge-discharge cycling test. Charge: 0.5 mA/cm² to 4.3(\bigcirc), 4.4(\triangle), 4.5 (\bigcirc), and 4.6 V(\diamondsuit)vs. Li/Li⁺ at 25 °C; Discharge: 2.5 mA/cm² to 3.0 V vs. Li/Li⁺ at 25 °C.

4.2.1 初期放電性能

試作電池の仕様と外観を Table 2 および Fig. 3 に示 す. 試作電池のエネルギー密度は,同一形状で人工 衛星用に設計した場合とくらべて約 1.5 倍となる 211 Wh/kg であり,目標の 200 Wh/kg を超える.

試作電池の放電性能を Fig. 4 に示す.コバルト酸リ チウム / グラファイト系電池特有の高い放電電圧を示 している.

4.2.2 寿命試験

寿命性能を加速評価するために実施した DOD100 % の充放電サイクル試験結果を Fig. 5 に示す. 25 サ イクル後の容量保持率は 98.7% と高い値である. つぎ に,1 サイクル目と 25 サイクル目の放電性能の比較 を Fig. 6 に示す. 平均放電電圧は1サイクル目が 3.81 V. 25 サイクル目が 3.82 V と充放電サイクルの進行

Fig. 4 Representative discharge characteristic for a prototype high energy density lithium-ion cell for lunar exploration mission at 10 A to 2.75 V at 15 °C. Charge: 5 A to 4.4 V followed by the constant voltage for 15 hours in total at 15 °C.

Fig. 3 Appearance of a prototype high energy density lithium-ion cell for lunar exploration mission.

Fig. 5 Change in discharge capacity of a prototype high energy density lithium-ion cell for lunar exploration mission under charge-discharge cycle life test. Charge: 10 A to 4.4 V followed by the constant voltage for 8 hours in total at 25 °C; Discharge: 25 A to 2.75 V at 25 °C.

Table 2 Specifications of prot	otype high energy	density lithium-	 ion cells.
--------------------------------	-------------------	------------------	--------------------------------

Items	High energy density cell	Designed satellite cell using same dimensions as the high energy density cell (Reference)
Actual capacity / Ah	58	41
Nominal voltage / V	3.88	3.70
Dimensions / mm	W 98 x T 37 x H* 159	W 98 x T 37 x H* 159
Mass / kg	1.07	1.10
Energy density / Wh/kg	211	138
* Without terminal bolts		

Fig. 6 Change in discharge characteristic of a prototype high energy density lithium-ion cell for lunar exploration mission after 25 charge-discharge cycles: initial cycle (\bigcirc), 25th cycle (\bigtriangleup).

Charge : 10 A to 4.4 V followed by the constant voltage for 8 hours in total at 25 °C. Discharge: 25 A to 2.75 V at 25 °C.

にともなう電圧低下は認められない. 平均放電電圧が 充放電サイクルの進行にともないわずかに増加してい る原因は, 充放電サイクルの進行による活物質の体積 変化によって, 活物質と電解液との接触が促進され, 内部抵抗が低減しているためと考えられる.その場合, エレメントの化学的な劣化が大きければ当該事象は相 殺されることにより確認できないが,本電池は化学的 な劣化が小さいため,上記事象による性能が現れるも のと推定できる.

4.2.3 安全性試験(過充電試験)

本電池の過充電時の安全性を確認するために, 4.4 V 完全充電の状態からさらに 10 A で連続充電したと きの挙動を調査した. その結果を Fig. 7 に示す.

電池は約4.7 Vから電池表面温度が上昇し始め,約 5.1 Vをピークに電圧が低下する.約5.0 Vから温度 上昇がさらに大きくなり,その後,内圧上昇とともに 安全弁が作動した.4.4 V完全充電からの過充電に対 しては,安全弁作動に至るまで充電電気量で25 Ah(容 量 58 Ahの約40%)のマージンがあることが確認で きる.

5 結言

月探査機用高エネルギー密度リチウムイオン電池開

Fig. 7 Overcharge characteristics of a prototype high energy density lithium-ion cell at 10 A (max. 12 V) at ambient temperature after precharged at 10 A to 4.4 V followed by the constant voltage for 8 hours in total at 25 °C.

発の一環としてプロトタイプ電池の試作をおこなった. 試作電池のエネルギー密度は211 Wh/kgであり, 目標の200 Wh/kgを上回った. これは同形状で人工 衛星用に設計した場合とくらべて約1.5倍のエネル ギー密度である. また, DOD100% 充放電サイクルで は25サイクル経過後の容量保持率は98.7%, 平均放 電電圧の低下はないというすぐれた寿命性能が得られ る. さらに,4.4 V完全充電後の過充電挙動については, 安全弁作動に至るまでに充電電気量で25 Ahのマー ジンのあることが認められた.

以上のように,エネルギー密度 200 Wh/kg 級の高 エネルギー密度リチウムイオン電池を開発することが できた.今後,本試作結果をベースにして開発を進め, 月着陸探査プロジェクトの成功に貢献していきたい.

文 献

- http://www.ard.jaxa.jp/publication/material/db/ db-compindex.html
- Masazumi Segawa, Ryota Michihata, Nobutaka Imamura, Takefumi Inoue, Hiroaki Yoshida, Koichi Takeda, Hitoshi Naito, and Makoto Kawase, GS Yuasa Technical Report, 7(2), 19 (2010).
- Hitoshi Naito, Makoto Kawase, and Takeshi Hoshino, 55th Space Sciences and Technology Conference in Japan, 1104, (2011).
- 電気化学会 電池技術委員会編,電池ハンドブック,オーム社 (2010).