Technical Report

報文

チタン酸リチウム負極に有機・無機二成分表面被膜 を電気化学的に形成したリチウムイオン電池の 高温寿命性能

High Temperature Life Performance for Lithium-ion Battery Using Lithium Titanium Oxide Negative Electrode with Electrochemically Formed Surface Film Comprising Organic-Inorganic Binary Constituents

> 手 茂 樹* 卓 ** Ш 小 袁 大久保 和 紗* 片 山 禎 弘* 温 田 敏 之* 村 田 利 雄*

Shigeki Yamate Suguru Kozono Kazusa Ohkubo Yoshihiro Katayama Toshiyuki Nukuda Toshio Murata

Abstract

The surface of lithium titanium oxide negative electrode at initial charged state was investigated in order to study actual reduction of electrolytic solution on it. As a result, surface film was detected with a few nm in thickness. This result indicates that electrolyte reduction occurred even on lithium titanium oxide with a nobler working potential. In addition, main composition of the film was found to be organic constituents containing C and O. This film is different from that formed on carbonaceous material in terms of its composition; that is, much less amount of inorganic constituents containing P and F. For the purpose of surface film formation containing both organic and inorganic constituents, lithium titanium oxide negative electrode was initially charged to 0.20 V vs. Li/Li⁺, which is almost same as the working potential of carbonaceous electrode. The detected surface film with a thickness larger than 40 nm was found to contain organic constituent as well as inorganic one. A 520 mAh class prismatic cell using lithium titanium oxide negative electrode having surface film with both constituents was fabricated. Life performances at 80 °C were found out to be excellent; capacity retentions were 71.5% after 3500 charge-discharge cycles and 73.6% after 285 days floating.

Key words : Lithium titanium oxide; Long life; Elevated temperature

*研究開発センター 第二開発部

** 研究開発センター 第五開発部

1 緒言

炭素負極を用いたリチウムイオン電池は高エネル

ギー密度であるという特長を活かして、携帯電話や ノート形パソコンなどに使用されている.近年,この 電池をいろいろな用途へ展開するために, 種々の性能 を向上させる研究開発が盛んにおこなわれている. た とえば、屋外での使用が想定される用途では、80 ℃ 程度の高温においても高い寿命性能が必要とされる. しかしながら、従来の炭素負極を用いたリチウムイオ ン電池の高温下における寿命性能は不充分であっ た¹⁾. その主な原因の1つは、炭素負極上で電解液が 還元分解されつづけた結果、その表面に非常に厚い表 面被膜が形成されることである²⁾. チタン酸リチウム の作動電位は炭素材料よりも貴であるため、これを用 いると電解液の還元分解が抑制されて、寿命性能の向 上が期待される. しかしながら, 80 ℃における電池 の寿命性能は、チタン酸リチウムを負極活物質に用い ると向上するものの³⁾,依然として実用的には不充分 であった.本研究では、このような性能劣化の原因を 明らかにするとともに、これを改善することを目的と し、負極に有機・無機二成分表面皮膜を形成させる技 術開発をおこなった、その結果、高温下の寿命性能を 著しく改善することができた。以下、その詳細につい てのべる.

2 実験条件

2.1 電解液の還元分解反応

Li_{4/3}Ti_{5/3}O₄, アセチレンブラックおよびポリフッ化 ビニリデンを 85:5:10 の質量比とした合剤を発泡ニッ ケル基材に充填してプレスし, 電極面積 2 cm² のチタ ン酸リチウム負極を得た. この負極を用いて, 対極 および参照極に金属 Li を, 電解液に 30 ml の 1 mol dm⁻³ LiPF₆ / プロピレンカーボネート(PC) + ジエチ ルカーボネート(DEC)(7:3, 体積比)を使用して, 3 極式のビーカ形セルを構成し, 1.52 V vs. Li/Li⁺の 電位で 120 時間定電圧充電して残余電流を測定し, 還 元分解反応を調べた.

つぎに、実際の電池系における反応を検証するため に、520 mAh 級の角形電池を製作した. その正極は、 アルミニウム箔の集電体と LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ 活物質 とを用い、負極は、銅箔の集電体と Li_{4/3}Ti_{5/3}O₄ 活物 質とを使用して、常法により製作した. また、電解液 として、5 mass% のビニレンカーボネート(VC) お よび5 mass% のプロパンサルトン(PS) を含む1 mol dm⁻³ LiPF₆ / PC + DEC (7:3, 体積比) のものを使 用した. さらに、セパレータとして、ポリオレフィン 系の微孔膜を使用した. この電池を 52 mA で 2.50 V まで充電し, その後, 定電圧で総通電時間が 30 時間 になるまで充電した. つづいて, Ar 雰囲気のグロー ブボックス内で, 電池を解体して負極をとりだし, Ar 雰囲気を保持したまま X 線光電子分光法 (XPS: KRATOS 社製 AXIS-HS)でその表面を深さ分析した. 測定条件およびイオンエッチングの条件はつぎのとお りである.

(1) 測定条件

X-ray source: MgK*a* Tube current: 10 mA Acceleration voltage: 10 kV Step: 0.1 eV

(2) エッチング条件

- Etching gas: Ar
- Pressure: 1×10^{-7} Pa
- Current: 15 mA

なお, エッチング深さは SiO₂ 換算の値を用いた. また, 測定に用いた負極の開回路電位は 1.55 V vs. Li/Li⁺であった.

2.2 有機・無機二成分表面被膜の形成

チタン酸リチウム負極上の被膜は、その作動電位 である 1.55 V vs. Li/Li⁺で自然に形成されたものであ り、一般的な炭素負極上に形成された被膜と比較する と、負極がさらされる電位は大きく異なる.そこで、 初期充電時にのみチタン酸リチウム負極の電位を炭素 負極と同等の 0.20 V vs. Li/Li⁺として、有機成分およ び無機成分の両者をそなえた表面被膜を形成させた. さらに、前節と同様の方法で電池を製作し、その充電 電圧の設定電圧を 4.10 V とした以外は、同様な条件 で XPS による深さ分析をおこなった.

2.3 角形リチウムイオン電池の高温寿命性能

2.1 節と同様な方法によって、有機・無機二成分表 面被膜を形成した負極を用いて 520 mAh 級角形リチ ウムイオン電池を製作し、80 ℃におけるサイクルお よびフロート寿命性能を調べた. その試験条件はつぎ のとおりである.

(1) サイクル寿命試験

周囲温度:80℃.

充電: 520 mA で 2.50 V まで,その後,定電圧充 電を合計 3 時間おこなった.

放電:520 mA で 1.00 V まで.

(2) フロート寿命試験
周囲温度: 80 °C.
充電: 520 mA で 2.50 V まで、その後、定電圧充

電を合計 15 日間おこなった. なお,容量確認試験はつぎの条件でおこなった. 周囲温度: 25 ℃.

放電 : 104 mA で 1.00 V まで.

3 結果と考察

3.1 チタン酸リチウム負極上の被膜形成

リチウムイオン電池の電解液の溶媒としては種々の カーボネートが混合して用いられることが多い. これ らの溶媒の還元分解電位は 1.4 V vs. Li/Li⁺ 程度であ る⁴⁾. この電位はチタン酸リチウムの作動電位である 1.55 V vs. Li/Li⁺ に近いので,チタン酸リチウム負極 上で電解液の還元分解が生じる可能性がある. 実際に, この負極を 1.52 V vs. Li/Li⁺ の電位で 120 時間定電圧 充電したところ, 観測される残余電流は 42 μ A/g と 大きな値であった. したがって,負極上で電解液の分 解が生じているものと考えられる.

炭素材料では、初期充電時に電解液が還元分解さ れて、その表面に被膜が形成されることが知られてい る^{5.6}ことから、チタン酸リチウム負極上においても、 同様に被膜が形成される可能性がある。そこで、2.50 Vまで充電した 520 mAh 級の角形 LiNi_{1/3}Mn_{1/3}Co_{1/3} O₂/Li_{4/3}Ti_{5/3}O₄ 系リチウムイオン電池から負極を取り 出して、その表面を XPS によって深さ分析した、測 定に用いた負極の開回路電位は 1.55 V vs. Li/Li⁺ で あった. その C_{1s} , $P_{2p3/2}$ および $Ti_{2p3/2}$ のXPSスペクト ルを Fig. 1 に示す. C_{1s} スペクトルでは, 0 ~ 5.8 nm に おいて 286, 288 および 290 eV にそれぞれ -C-O-C-, ROCO₂Li および -O-C(=O)O- に帰属されるピークが 検出され⁵⁾, 5.8 nm よりも深い部分ではこれらのピー クが消失している.一方, Ti2n3/2 スペクトルでは, 0 ~ 5.8 nm にはピークが検出されず, これよりも深い 部分に 456 および 457 eV にそれぞれ Ti(III) および Ti(IV)の酸化物、すなわち、充電状態のチタン酸リチ ウムに帰属されるピークが存在する.このことから, チタン酸リチウム表面に 5.8 nm の厚さの被膜が形成 するものといえる.いいかえれば、チタン酸リチウム の作動電位である 1.55 V vs. Li/Li⁺ において, 電解液 が分解することになる.

 $P_{2p3/2}$ の XPS スペクトルに注目すると、電解質塩 である LiPF₆ およびその分解生成物の Li_xPF_yO_z に帰 属される 138 および 135 eV のピークが認められな い. このことから、チタン酸リチウム負極上に形成 された被膜は、主な構成元素として C や O を含む -C-O-C-、ROCO₂Li、-O-C(=O)O-などの結合をもつ 有機成分から構成されることが明らかである.これは、 主な構成元素として P や F を含む Li_xPF_yO_z などの無

Fig. 1 XPS spectra on the surface of negative electrode disassembled from 520 mAh class prismatic $LiNi_{1/3}$ $Mn_{1/3}Co_{1/3}O_2/Li_{4/3}Ti_{5/3}O_4$ lithium-ion cell after charged up to 2.50 V. Ar⁺ ion etching was carried out intermittently after each XPS measurement, and each XPS spectrum was pilled up from the bottom. Open circuit potential of the negative electrode was 1.55 V vs. Li/Li^+ . (a) C_{1s} , (b) $P_{2p3/2}$, and (c) $Ti_{2p3/2}$.

機成分をほとんど含まない点で炭素負極上に生成する 被膜と大きく異なっている.

一般に、炭素負極の作動電位は 0.1 V vs. Li/Li⁺ で あって、チタン酸リチウムのそれよりも著しく卑であ る.にもかかわらず、室温での寿命性能は比較的良好 である。このことは、炭素材料上の被膜による電解液 の還元分解反応を抑制する機能がすぐれることを示唆 している.すなわち、チタン酸リチウム負極上に形成 される有機成分の被膜では、電解液の還元分解を抑制 する機能は弱いものと推察される.

3.2 有機・無機二成分表面被膜の形成

チタン酸リチウム負極上の被膜は、その作動電位 である 1.55 V vs. Li/Li⁺で自然に形成されたものであ り、一般的な炭素負極上に形成された被膜と比較する と、負極がさらされた電位は大きく異なる.そこで、 初期充電時にのみチタン酸リチウム負極の電位を炭素 負極と同等の 0.20 V vs. Li/Li⁺として、有機成分およ び無機成分の両者を備えた表面被膜の形成を試みた. そのために、前節で用いた LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂/Li_{4/3} Ti_{5/3}O₄系角形電池を52 mAで、今度は、設定電圧を4.10 V と高く設定して充電をおこない、同様に XPS によ る深さ分析をおこなった.その結果を Fig. 2 に示す.

C_{1s}スペクトルでは、0~86 nm のすべての深さに おいて 286,288 および 290 eV にそれぞれ有機成分 に帰属されるピークが検出される.一方, Ti_{2p3/2}スペ クトルでは、0~29 nm にはほとんどピークが検出さ れず、40 nm よりも深い部分に 456 および 457 eV に 充電状態のチタン酸リチウムに帰属されるピークが 検出される. 有機成分が認められる深さ領域とチタン 酸リチウムが検出され始める深さ領域との間にズレが 生じるが、これは、エッチング時間が長くなったこと により、被膜に含まれる各元素のエッチングレートの 違いが強く影響することによるものであると考えられ る.また、86 nm の深さにおいてチタン酸リチウムに 帰属されるピークが強く現れることから、この被膜の 厚さは40 nm 以上であると見積もられ、これはチタ ン酸リチウム負極の作動電位 (1.55 V vs. Li/Li⁺) で形 成された被膜よりも著しく厚いものといえる.

 $P_{2p3/2}$ の XPS スペクトルでは、P や F などの無機成 分($Li_x PF_y O_z \alpha \varepsilon$)に帰属される 135 eV のピークが 5.8 ~ 86 nm の領域で認められる^{6,7}. したがって、負極 電位を 0.20 V vs. Li/Li^+ として生成させた被膜は、有 機成分および無機成分の両者をそなえた表面被膜であ るものと考えられる.

3.3 負極に有機・無機二成分表面被膜を形成した角 形リチウムイオン電池の高温寿命性能

初期充電電圧を 4.1 V として,負極に有機・無機二 成分の表面被膜を電気化学的に形成した 520 mAh 級

Fig. 2 XPS spectra on the surface of negative electrode disassembled from 520 mAh class prismatic $LiNi_{1/3}$ $Mn_{1/3}Co_{1/3}O_2/Li_{4/3}Ti_{5/3}O_4$ lithium-ion cell after charged up to 4.10 V. Ar⁺ ion etching was carried out intermittently after each XPS measurement, and each XPS spectrum was pilled up from the bottom. Open circuit potential of the negative electrode was 0.20 V vs. Li/Li^+ . (a) C_{1s} , (b) $P_{2p3/2}$, and (c) $Ti_{2p3/2}$.

Fig. 3 Change in capacity retention of 520 mAh class prismatic $\text{LiNi}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3}\text{O}_2/\text{Li}_{4/3}\text{Ti}_{5/3}\text{O}_4$ lithium-ion cell using negative electrode with electrochemically formed surface film comprising organicinorganic binary constituents under cycling between 2.5 and 1.0 V at 520 mA at 80 °C.

角形リチウムイオン電池の80 ℃における高温サイク ルおよびフロート寿命試験をおこなった.その寿命性 能の結果をFig.3および4にそれぞれ示す.これらの 図から、この二成分表面被膜を形成した電池は、3500 サイクル後および285日フロート充電後の容量維持率 がそれぞれ71.5%および73.6%と高い値であり、80 ℃ での寿命性能がきわめてすぐれていることがわかる.

4 結言

チタン酸リチウム負極を用いた電池の高温寿命性能 を向上させるために、その性能が低下する原因を調査 し、さらに、これを改善する方法を検討した結果、つ ぎのことが明らかになった。

- (1) チタン酸リチウム負極上では 1.55 V vs. Li/Li⁺の 電位において、電解液である 1 mol dm⁻³ LiPF₆ / PC + DEC (7:3) が還元分解されて、C や O な どの有機成分のみからなる表面被膜が形成される。
- (2) チタン酸リチウム負極を 0.20 V vs. Li/Li⁺の電位 に保持すると、有機成分および無機成分の両者を 含む表面被膜が生成する.
- (3) チタン酸リチウム負極に有機・無機二成分表面被 膜を電気化学的に形成した電池は、3500 サイクル

Fig. 4 Change in capacity retention of 520 mAh class prismatic $\text{LiNi}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3}\text{O}_2/\text{Li}_{4/3}\text{Ti}_{5/3}\text{O}_4$ lithium-ion cell using negative electrode with electochemically formed surface film comprising organicinorganic binary constituents under float charging of 2.5 V after charge at 520 mA to the same voltage at 80 °C.

後および285日フロート充電後の容量維持率がそれぞれ71.5%および73.6%と高い値であり,80℃ での寿命性能がきわめてすぐれている.

文 献

- E. Markevich, E. Pollak, G. Salitra, and D. Aurbach, J. Power Sources, 174, 1263 (2007).
- 2) J. Vetter, P. Novak, M. R. Wagner, C. Veit, K. C. Moeller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, *J. Power Sources*, **147**, 269 (2005).
- K. Zaghib, M. Simoneau, M. Armand, and M. Gauthier, *J. Power Sources*, 81-82, 300 (1999).
- 4) X. Zhang, R. Kostecki, T. J. Richardson, J. K. Pugh, and P. N. Ross, Jr., *J. Electrochem. Soc.*, **148**, A1341 (2001).
- E. Peled, D. Golodnitsky, C. Menachem, and D. Bar-Tow, *J. Electrochem. Soc.*, **145**, 3482 (1998).
- M. Herstedt, D. P. Abraham, J.B. Kerr, and K. Efstoem, *Electrochimica Acta*, 49, 5097 (2004).
- J. Shu, *Electrochemical and Solid-State Letters*, 11, A238 (2008).