Technical Report 報 文 希土類 – ニッケル系合金の水素化反応にともなう 格子サイズ・ひずみ変化のその場測定 In-Situ Measurement of Change in Lattice Size and Strain for Rare Earth Nickel Based Hydrogen Storage Alloys 溒 輔 * 片山禎弘* 之* 男 ** 藤 大 温 田敏 秋 蕫 悦 Daisuke Endo Yoshihiro Katayama Toshiyuki Nukuda Etsuo Akiba

Abstract

Change of lattice volume and lattice strain of rare-earth nickel based hydrogen storage alloys for Ni-MH batteries were investigated during hydrogenation using in-situ X-ray diffraction (XRD). Lattice parameters and lattice strains parameter were refined by Rietveld analysis of diffraction profiles. Substitution of Co for Ni and other rare earth for Ce in AB₅-type MmNi_{430-x}Co_xAl_{0.30}Mn_{0.40} (Mm: misch metal; x = 0, 0.75) effectively suppressed lattice volume expansion. Anisotropic strain that is related to dense dislocation was not observed, and isotropic strain observed was only less than 1.2% in the alloys studied in the present work. We will show and discuss our material strategy and possible way to improve capacity and life of hydrogen storage alloys.

Key words: hydrogen storage alloy, lattice volume expansion, lattice strain, In-situ analysis

1 はじめに

希土類-ニッケル系合金は室温にて水素吸放出が可 能である材料として、多種の用途に用いられている. その中で、電池材料用途としても、従来の性能に加え てさらなる長寿命・高容量化が望まれている.本報で は、このような背景をふまえ、水素化反応過程におけ るナノ・ピコオーダーの格子サイズ・ひずみ変化をダ イレクトにとらえることで、反応メカニズムの詳細な 検討をおこない,長寿命・高容量化への材料化学的な アプローチをおこなった結果について報告する.

2 電池機能材料の高性能化への指針

水素吸蔵合金は水素吸放出過程において結晶の格子 サイズが変化する.また、代表的な AB₅型を始めと して多くの水素吸蔵合金は金属間化合物であるために セラミックスと同様、ヤング率測定、引っ張り試験な ど直接的な材料試験をおこなうことはほぼ不可能に近 いといえる.ビッカースによる硬度測定といった手法 も「硬い」「柔らかい」といった感覚をとらえている に止まりがちである.これらを考慮すると長寿命化へ

^{*} 研究開発センター 第三開発部

^{** (}独)産業技術総合研究所 エネルギー技術研究部門

の理想的な具体的方策としては,割れやひずみ導入の 要因である粒子内の応力発生および応用集中を極力避 けることがあげられる.前者に関しては,他の材料と 固溶体を形成させることによって,格子の基本骨格を 保ちつつ,格子サイズ(体積)の変化を最小にするな どの手段が有効である.後者に関しては,製造時の熱 履歴を制御することなどによる組織の微細化,および 格子サイズ変化にともなう内部欠陥の生成を抑制する ことなどがあげられ,これらは高容量化にもつながる 技術といえる.

以上,これらの点に着目して,その場X線回折測 定(in-situ XRD)と構造解析手法を併用し水素吸蔵合 金材料の反応過程について詳細な検討をおこなった.

3 In-situ XRD 測定とプロファイル解析

合金試料は十分な粉砕(~32 μ m)をおこなっ たのち,高圧チャンバーを備えた in-situ XRD 装置 (RIGAKU-RINT2500V)にセットした.XRD 測定の 前にチャンバー内で室温にて 3.0 MPa の水素圧雰囲 気中 30 min 静置し,ロータリーポンプを用いた真空 脱気を 30 min おこなった.この過程を5回繰り返す ことによって合金試料の活性化をおこなった.

XRD の波長はグラファイトモノクロメータで単色 化した Cu-K a 線を用い,ステップスキャン法にて 50 kV-200 mA で測定した.

得られた回折プロファイルについて RIETAN-2000 の Thompson Cox Hastings 擬フォークト関数による リートベルト解析¹¹をおこなうことで,格子定数,格 子ひずみおよび結晶子サイズに起因するパラメータを 精密化した.等方性の格子ひずみはガウス関数,ロー レンツ関数からそれぞれ導かれるパラメータより計算 される値の和をとることによって求めた².

4 AB₅型合金の水素化反応解析への展開

4. 1 MmNi_{4.30-x}Co_xAl_{0.30}Mn_{0.40}系 (x = 0, 0.75)の検 討

Fig. 1 に AB₅ 型化学量論組成の MmNi₄₃₀Al_{0,30}Mn_{0,40} (Mm: La_{0,34}Ce_{0,47}Pr_{0,05}Nd_{0,14})の水素化過程における insitu XRD 結果の一部を示す. Be の窓を通した回折測 定をおこなっているため、プロファイル解析には Be および BeO を含めておこなった.水素化途中 (Fig. 1 (b)) では、固溶体相と水素化物相が共存しているこ とから反応はこれら二相の間で進行することがわかっ

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 2θ / degree

Fig. 1 In-situ XRD profiles of MmNi_{4.30}Al_{0.30}Mn_{0.40}-H system for (a) H/M = 0.00, (b) H/M = 0.56, and (c) H/M = 0.95. The tick marks below the profile indicate the positions of all allowed K a_1 and K a_2 peaks for the solid solution phase, the hydride phase, Be and BeO. The bottom solid line shows the difference between the calculated and observed intensities.

た.両相とも六方晶 (P6/mmm)構造をモデルとして 用いることによって最も良い計算結果との一致が得ら れた. 得られた格子定数 (a, c) より計算した二相の格子体 積 ($\sqrt{3}a^2 \cdot c / 2$)の変化と合金中に含まれる水素(モル) 量の相関を Fig. 2 に示す. 0.20 \leq H/M \leq 0.80 の間 で二相共存領域が見られ,その間の格子体積の差は約 19% であった.それ以降(0.80 \leq H/M \leq 0.95)の領域 では,体積が単調に増加していることから,水素化物 相への水素固溶が進行していると判断できる.折り返 しの水素放出過程においても(若干のヒステリシスを ともないつつ)同様に可逆な変化が見られることから, この合金の水素吸放出過程は,i)固溶体相の水素固 溶反応,ii)固溶体相と水素化物相の二相間での反応, iii)水素化物相の水素固溶反応,の三つの領域に分か れて進行することがわかった.

一方,その間に見られる格子ひずみ変化について Fig.3に示す.両相とも異方性ひずみに関しては観測 されず,水素化物相の等方性ひずみは全領域にて0.7% の一定値を示した.さらにローレンツ関数から計算さ れる結晶子サイズ(回折現象に対してコヒーレントな ドメインの大きさ)に関しても,100~200 nm と一 定であった.水素吸放出過程にてこれらに変化を生じ ることなく,大きな体積変化をひずみが弾性的に受け 入れているという非常に興味深い結果を得た.

っづいて, Ni の一部に Co を置換した MmNi_{3.55}Co_{0.75} Al_{0.30}Mn_{0.40} について検討した³⁾. 得られた XRD プ

Fig. 2 Change in lattice volume of MmNi_{4.30}Al_{0.30} Mn_{0.40}-H system during hydrogen absorption and desorption at 298 K. The solid solution phase: (\blacksquare , \Box), the hydride phase: (\bullet , \bigcirc). Closed marks: absorption; Open marks: desorption.

ロファイルより,先程の MmNi_{4.30}Al_{0.30}Mn_{0.40} と比較 して二相反応領域にて回折ピークにスプリットが 生じていた.したがって,MmNi₃₅₅Co_{0.75}Al_{0.30}Mn_{0.40} の構造モデルとしては Fig. 4 に示すように,六方晶 (*P6/mmm*)が基底面方向にひずんだ対称性の低下し た斜方晶 (*Cmmm*) 構造をプロファイル解析に適用し た.

Fig. 5 に解析結果を含めた水素化反応にともなう XRD プロファイル変化の一部を示す. それぞれの単 相,および二相共存時において,転位導入に起因する

Fig. 3 Change in isotropic strain of $MmNi_{4,30}AI_{0,30}$ $Mn_{0,40}$ -H system for (a) solid solution phase and (b) the hydride phase. Closed marks: absorption; Open marks: desorption.

GS Yuasa Technical Report

異方性のひずみは観測されなかった.水素吸放出過程 において,精密化した格子定数 (a, b, c)から導いた格 子体積 $(a \cdot b \cdot c)$ 変化を Fig. 6 に示す.固溶体相およ び水素化物相の固溶領域が拡大し,二相の共存領域が 狭まった $(0.25 \leq H/M \leq 0.55)$.また,この二相共存 領域において二相の体積差が約 10% へ減少した.

一方, 回折プロファイルのラインブロードニングか

Fig. 4 Schematic illustration of symmetry reduction from hexagonal (*P6/mmm*) to orthorhombic (*Cmmm*) viewed along [001].

Fig. 6 Change in lattice volume of MmNi_{3.55}Co_{0.75} Al_{0.30}Mn_{0.40}-H system during hydrogen absorption and desorption at 333 K. The solid solution phase : (\blacksquare , \Box), the hydride phase : (\bullet , \bigcirc). Closed marks : absorption; Open marks : desorption.

ら導かれる等方性の格子ひずみの変化を Fig. 7 に示 す.各相の単相領域が 0.3% ほどであるのに対し,二 相共存領域においては最大 1.2% ほどの等方性ひずみ が観測された.つまり MmNi₃₅₅Co_{0.75}Al_{0.30}Mn_{0.40} 合金 系における格子ひずみは含有水素量に依存した傾向を 示し,とくに二相が等量存在するときに最大となる ものであった.このことから格子ひずみは二相が弾性

Fig. 5 Rietveld refinement of in-situ XRD profiles for $MmNi_{3.55}Co_{0.75}Al_{0.30}Mn_{0.40}$ -H system for (a) H/M = 0.00, (b) H/M = 0.34, and (c) H/M = 0.82.

的に接触している界面から生じていることが想定される.しかし,LaNi₅が2.5%のひずみを生じることから, 定量的にはごく小さいひずみ量であるといえる⁴.

4.2 Mm を構成する希土類元素種の効果

つぎに, B 側組成を一定 (Ni₃₅₅Co₀₇₅Al_{0.30}Mn_{0.40}) にし, A 側希土類 (Mm) 組成を変更した系について検討し た⁵⁾. Mm 組成はこれまでの Ce, La, Nd, Pr 系のうち 主成分である Ce を他元素 (Y, Gd, Tm, Lu) で置き換 えることで調製した. これらの合金について相変態等 に影響をおよぼさないよう平衡水素圧を一定となるよ

Fig. 7 Change in isotropic strain of $MmNi_{3.55}Co_{0.75}$ $AI_{0.30}Mn_{0.40}$ -H system for (a) solid solution phase and (b) the hydride phase. Closed marks: absorption ; Open marks: desorption.

うに設計した.具体的には,各合金の格子体積が一定 となるように,それぞれの置換元素の原子半径から置 換量を調整した.

Fig. 8に希土類元素種がPCT特性におよぼす影響を 示す.可逆な水素吸蔵量,固溶領域および van't Hoff プロットより導いた水素化物生成熱 ($\Delta H \approx -35$ kJ / mol) について差は見られないものの,Ceを含む合 金にのみ平衡水素圧の上昇が見られた.これら希土 類元素の中でCeのみ異なった結晶構造をとり,唯 -4 価という酸化数をとりうることを反映している 可能性がある.その他のほぼ同様な挙動を示した合 金のうち Luを含む合金 (Mm: La_{0.65}Lu_{0.16}Pr_{0.05}Nd_{0.14}) について,Ceを含む合金 (Mm: La_{0.34}Ce_{0.47}Pr_{0.05}Nd_{0.14}) との水素化反応解析を比較して以下に示す.

Fig. 9に固溶体相と水素化物相二相がほぼ同じ比で 存在するときの in-situ XRD のリートベルト解析の結 果を示す. Ce を含む合金と比較して (Fig. 5 (b)), 両 相の回折角度間隔が狭まっており低角度側にいたって はほぼ重なっている. これは Lu を含む合金の方が体 積膨張が抑制されていることを示す結果である. 精密 化して導いた格子定数より計算すると,二相における 格子体積差は 5% まで抑制されることがわかった. そ れにともなって生じる格子ひずみの項に関しては, 両 者に差は見られなかった. 今後,このような希土類元 素種の役割についてさらに踏み込んだ解析が必要とな る.

Fig. 8 PCT curves of MmNi_{3.55}Co_{0.75}Al_{0.30}Mn_{0.40} at 333 K. Mm is containing (\Box) Ce, (\bigcirc) Y, (\triangle) Gd, (\bigtriangledown) Tm, and (\diamondsuit) Lu.

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 2 θ / degree (Cu_{κα})

Fig. 9 Rietveld refinement of in-situ XRD profile for $MmNi_{3.55}Co_{0.75}AI_{0.30}Mn_{0.40}H_{2.40}$ (H/M \sim 0.43). Mm consists of $La_{0.65}Lu_{0.16}Pr_{0.05}Nd_{0.14}$.

5 おわりに

本報では、AB₅型水素吸蔵合金材料に焦点を絞り、 長寿命・高容量化に向けた材料化学的な解析について、 in-situ 手法を用いた内容を報告した. このようにナ ノ・ピコオーダーの格子サイズ変化, ひずみ生成を定 量的にとらえることによって材料の発揮できる能力を 前もって予測することが可能となる. また,水素吸蔵 合金の評価のみに留まらずセラミックスなど様々な分 野で応用が可能である. 今後の材料設計に大いにいか して,より進化した電池機能材料の開発につなげてい きたいと考えている.

文 献

- F. Izumi, http: // homepage.mac. com / fujioizumi /.
- Y. Nakamura, R.C. Bowman, E. Akiba, J. Alloys Compd., 373 183 (2004).
- 3) 遠藤大輔, 片山禎弘, 温田敏之, 秋葉悦男, 第46 回電池討論会要旨集, p.420-421 (2005).
- Y. Nakamura, E. Akiba, J. Alloys Compd. 308, 309 (2000).
- 5) D. Endo, E. Akiba, Mat. Trans., 47, 1914 (2006).